Structure of Matter - Midterm Exam 2

April 11, 2022

Without explanation or calculation steps no points will be awarded to a sub-problem even if the answer is correct!

1 - Baryons: Consider the charmed baryon with quark content usc and which decays into $p+\kappa^{-}+\pi^{+}$.
The quark composition of π^{+}is ū and of K^{-}it is $s \bar{u}$.
a) Determine the hypercharge and the azimuthal isospin of this baryon. Explain your answer. [2 pnt]
b) Verify whether conservation laws for charge and baryon number are respected. Explain your answer. [2 pnt]
c) What is the approximate time scale of the decay? Explain your answer. [3 pnt]
d) Which-force carrier is most likely $\%$ be involved in this decay? Explain your answer. pnt]

2 - Color and Syinmetry: Consider a Δ^{2+} baryon (quark content uuu)
a) What is the color of the Δ^{2+} baryon, explain your answer. [2 pnt]
b) What is the color hypercharge of the Δ^{2+} baryon, explain your answer. [2 pnts]

3 - Mesons consisting out of the following quarks: u, d, \bar{u}, and \bar{d}
a) What is the quark composition of ρ^{-}mesons. Explain your answer. [1 pnts]
b) ρ^{-}mesons are the second lightest mesons of these mesons. What are the J value and parity of ρ^{-}mesons? Explain your answer [3 pnts].
c) Derive whether ρ^{-}mesons are or are not eigenstates of the charge conjugation operator? [2 pnts]

4 - Nuclear sizes, decay and stability
a) The unstable dysprosium isotope ${ }_{66}^{150} \mathrm{Dy}$ decays via either α decay to gadolinium (Gd) or via β^{+}decay to terbium (Tb). Give the complete formula for each of the two decay reactions. [3 pnts]
b) For a specific Sn isotope $(Z=50)$ one finds the charge density to be $0.058\left(\mathrm{e} / \mathrm{fm}^{3}\right)$. Determine the mass number of this Sn isotope, explain your answer [3 pnts]
c) For $A=149$ one calculates with the liquid drop model that $Z=62$ and $N=87$ is most stable $\left({ }_{62}^{149} \mathrm{Sm}\right)$. How does the ratio between neutrons and protons change if one would neglect either the Coulomb term or the " δ " term in the liquid drop model (hint: no lengthy calculations needed). [4 pnts]

$$
B(N, Z)=a A-b A^{\frac{2}{3}}-\frac{d Z^{2}}{A^{\frac{1}{3}}}-s \frac{(N-Z)^{2}}{A}-\frac{\delta}{A^{\frac{1}{2}}}
$$

$\mathrm{a}=$	15.8	$\delta=$	$\begin{gathered} 11.2 \\ 0 \\ -11.2 \\ \hline \end{gathered}$	odd-odd even-odd even-even
$\mathrm{b}=$	18.3			
$\mathrm{d}=$	0.71			
$\mathrm{s}=$	23.2	all parameters are in MeV		

5 - Nuclear shell model and hyperfine levels. Use the generic sequence of nuclear shell filling:

$$
1 \mathrm{~s}, 1 \mathrm{p}, 1 \mathrm{~d}, 2 \mathrm{~s}, 1 \mathrm{f}, 2 \mathrm{p}, 1 \mathrm{~g}, 2 \mathrm{~d}, 1 \mathrm{~h} \ldots
$$

a) Why are all even-even nuclei 0^{+}nuclei? Motivate/explain your answer. [3 pnts]
b) What is the nuclear spin and parity of ${ }_{51}^{123} \mathrm{Sb}$. Explain your answer. [4 pnts]
c) The ground term of Sb is of ${ }^{4} \mathrm{~S}$ character. Determine the hyperfine levels (F values) associated with the ground term of Sb . Explain your answer. [3 pnts]

